Сенсорное воспитание дошкольников
В истории дошкольной педагогики, на всех этапах ее развития, эта проблема сенсорного воспитания занимала одно из центральных мест.
Компьютерно-телевизионные средства обучения
Информатизация общества — это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности...
Блок 2.
При каком значении параметра а уравнения х2+(а+3а+2)х=0 и х2-2(а+2)х+5а+6=0 равносильны?
При каком значении параметра а корни трехчлена
3х2+(а-4а)х+а-1 равны по модулю и противоположны по знаку?
Найти все значения а, при которых имеет корни уравнение
(2а+1)х-3(а+1)х+(а+1)=0.
При каком значении а уравнения х2+ах+1=0 и х2+х+а=0 имеют общий корень?
При каких значениях параметра р сумма квадратов корней уравнения х2+(р-1)х+р-1,5=0 наибольшая?
Найти наименьшее значение выражения х12 + х22, если х1 и х2 – корни уравнения х2 - 2ах + а + 6 = 0.
Корни х1 и х2 уравнения х2+рх+12=0 обладают свойством х2-х1=1. Найти р.
При каком значении а уравнение (а+4х-х-1)(а+1-
)=0 имеет 3 корня?
Подведение итогов занятия:
- Подсчет количества верно решенных заданий у каждой команды, начисление командам баллов.
- Определение уровня достижения целей урока и меру участия каждого учащегося в занятии, оценка работы школьников. В каждой группе заполняется таблица (Таблица 4), происходит распределение общего количества баллов между членами каждой команды.
5. Постановка домашнего задания:
Каждый ученик должен выполнить любые пять заданий из блоков 1 и 2, которые не решал на занятии.
Занятие V. Расположение параболы относительно оси абсцисс
Цели: рассмотрение возможных случаев расположения параболы относительно оси абсцисс; использование графических представлений при решении задач; применение имеющихся знаний по решению квадратного уравнения.
Ход занятия:
Организационный момент.
Актуализация имеющихся знаний и мотивация изучения нового материала.
График квадратичной функции – парабола, вершина которой находится в точке с координатами (-B/(2A); -D/(4A)).
Ученикам дается задание самостоятельно изобразить все возможные случаи расположения параболы относительно оси Ох. Затем один из учеников изображает эти варианты на доске.
Возникают вопросы: Как задать нужное расположение параболы? Каким условиям должны удовлетворять коэффициенты параболы, чтобы она была определенным образом расположена относительно оси Ох?
3. Изучение нового материала.
Происходит беседа по изображенным рисункам, в результате которой составляется таблица (Таблица 5).
Таблица 5
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|